Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.221
Filtrar
1.
Biochem Biophys Res Commun ; 709: 149855, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38579618

RESUMO

P-glycoprotein (P-gp) is an ATP-binding cassette transporter known for its roles in expelling xenobiotic compounds from cells and contributing to cellular drug resistance through multidrug efflux. This mechanism is particularly problematic in cancer cells, where it diminishes the therapeutic efficacy of anticancer drugs. P-gp inhibitors, such as elacridar, have been developed to circumvent the decrease in drug efficacy due to P-gp efflux. An earlier study reported the cryo-EM structure of human P-gp-Fab (MRK-16) complex bound by two elacridar molecules, at a resolution of 3.6 Å. In this study, we have obtained a higher resolution (2.5 Å) structure of the P-gp- Fab (UIC2) complex bound by three elacridar molecules. This finding, which exposes a larger space for compound-binding sites than previously acknowledged, has significant implications for the development of more selective inhibitors and enhances our understanding of the compound recognition mechanism of P-gp.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Acridinas , Tetra-Hidroisoquinolinas , Humanos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Microscopia Crioeletrônica , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Acridinas/farmacologia
2.
PLoS One ; 19(3): e0298533, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38536776

RESUMO

An important cellular barrier to maintain the stability of the brain's internal and external environment is the blood-brain barrier (BBB). It also prevents harmful substances from entering brain tissue through blood circulation while providing protection for the central nervous system. It should be noted, however, that the intact BBB can be a barrier to the transport of most drugs into the brain via the conventional route of administration, which can prevent them from reaching effective concentrations for the treatment of disorders affecting the central nervous system. Electroacupuncture stimulation has been shown to be effective at opening the BBB in a series of experimental studies. This study systematically analyzes the possibility and mechanism by which electroacupuncture opens the BBB. In PubMed, Web of Science, VIP Database, Wanfang Database, and the Chinese National Knowledge Infrastructure, papers have been published for nearly 22 years aimed at opening the BBB and its associated structures. A comparison of EB content between electroacupuncture and control was selected as the primary outcome. There were also results on vascular endothelial growth factor (VEGF), nerve growth factor (NGF), P-Glycoprotein (P-gp), Matrix Metalloproteinase 9 (MMP-9), and glial fibrillary acidic protein (GFAP). We utilized Review Manager software analysis to analyze correlations between studies with a view to exploring the mechanisms of similarity. Evans Blue infiltration forest plot: pooled effect size of 2.04, 95% CI: 1.21 to 2.87, P < 0.01. These results indicate that electroacupuncture significantly increases EB penetration across the BBB. Most studies have reported that GFAP, MMP-9, and VEGF were upregulated after treatment. P-gp expression decreased as well. Electroacupuncture can open the BBB, and the sparse-dense wave is currently the most effective electroacupuncture frequency for opening the BBB. VEGF plays an important role in opening the BBB. It is also important to regulate the expression of MMP-9 and GFAP and inhibit the expression of P-gp.


Assuntos
Barreira Hematoencefálica , Eletroacupuntura , Ratos , Animais , Barreira Hematoencefálica/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Ratos Sprague-Dawley , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Permeabilidade
3.
Int J Mol Sci ; 25(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542082

RESUMO

Intracellular calcium, as a second messenger, is involved in multilevel cellular regulatory pathways and plays a role (among other processes) in switching between survival and initiation of cell death in neoplastic cells. The development of multidrug resistance (MDR) in neoplastic cells is associated with the ability of cells to escape programmed cell death, in which dysregulation of intracellular calcium may play an important role. Therefore, reliable monitoring of intracellular calcium levels is necessary. However, such a role might be limited by a real obstacle since several fluorescent intracellular calcium indicators are substrates of membrane ABC drug transporters. For example, Fluo-3/AM is a substrate of P-glycoprotein (ABCB1 member of the ABC family), whose overexpression is the most frequent cause of MDR. The overexpression of ABCB1 prevents MDR cell variants from retaining this tracer in the intracellular space where it is supposed to detect calcium. The solution is to use a proper inhibitor of P-gp efflux activity to ensure the retention of the tracer inside the cells. The present study showed that Zosuquidar and Tariquidar (P-gp inhibitors) are suitable for monitoring intracellular calcium, either by flow cytometry or confocal microscopy, in cells overexpressing P-gp.


Assuntos
Cálcio , Resistência a Múltiplos Medicamentos , Cálcio/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral
4.
Int J Pharm ; 655: 124028, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38518871

RESUMO

Ovarian cancer is a malignant tumor that seriously endangers the lives of women, with chemotherapy being the primary clinical treatment. However, chemotherapy encounters the problem of generating multidrug resistance (MDR), mainly due to drug efflux induced by P-glycoprotein (P-gp), which decreases intracellular accumulation of chemotherapeutic drugs. The drugs efflux mediated by P-gp requires adenosine triphosphate (ATP) hydrolysis to provide energy. Therefore, modulating energy metabolism pathways and inhibiting ATP production may be a potential strategy to reverse MDR. Herein, we developed a PTX-ATO-QUE nanoparticle (PAQNPs) based on a PLGA-PEG nanoplatform capable of loading the mitochondrial oxidative phosphorylation (OXPHOS) inhibitor atovaquone (ATO), the glycolysis inhibitor quercetin (QUE), and the chemotherapeutic drug paclitaxel (PTX) to reverse MDR by inhibiting energy metabolism through multiple pathways. Mechanistically, PAQNPs could effectively inhibit the OXPHOS and glycolytic pathways of A2780/Taxol cells by suppressing the activities of mitochondrial complex III and hexokinase II (HK II), respectively, ultimately decreasing intracellular ATP levels in tumor cells. Energy depletion can effectively inhibit cell proliferation and reduce P-gp activity, increasing the chemotherapeutic drug PTX accumulation in the cells. Moreover, intracellular reactive oxygen species (ROS) is increased with PTX accumulation and leads to chemotherapy-resistant cell apoptosis. Furthermore, PAQNPs significantly inhibited tumor growth in the A2780/Taxol tumor-bearing NCG mice model. Immunohistochemical (IHC) analysis of tumor tissues revealed that P-gp expression was suppressed, demonstrating that PAQNPs are effective in reversing MDR in tumors by inducing energy depletion. In addition, the safety study results, including blood biochemical indices, major organ weights, and H&E staining images, showed that PAQNPs have a favorable in vivo safety profile. In summary, the results suggest that the combined inhibition of the two energy pathways, OXPHOS and glycolysis, can enhance chemotherapy efficacy and reverse MDR in ovarian cancer.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias Ovarianas , Humanos , Feminino , Camundongos , Animais , Paclitaxel , Neoplasias Ovarianas/patologia , Atovaquona/farmacologia , Atovaquona/uso terapêutico , Quercetina/farmacologia , Quercetina/uso terapêutico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Resistência a Múltiplos Medicamentos , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Metabolismo Energético , Trifosfato de Adenosina/metabolismo
5.
J Appl Biomater Funct Mater ; 22: 22808000241235442, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38497242

RESUMO

Given the numerous adverse effects of lung cancer treatment, more research on non-toxic medications is urgently needed. Curcumin (CUR) and berberine (BBR) combat drug resistance by controlling the expression of multidrug resistant pump (MDR1). Fascinatingly, combining these medications increases the effectiveness of preventing lung cancer. Their low solubility and poor stability, however, restrict their therapeutic efficacy. Because of the improved bioavailability and increased encapsulation effectiveness of water-insoluble medicines, surfactant-based nanovesicles have recently received a great deal of attention. The current study sought to elucidate the Combination drug therapy by herbal nanomedicine prevent multidrug resistance protein 1: promote apoptosis in Lung Carcinoma. The impact of several tween (20, 60, and 80) types with varied hydrophobic tails on BBR/CUR-TNV was evaluated. Additionally, the MDR1 activity and apoptosis rate of the BBR/CUR-TNV combination therapy were assessed. The encapsulation effectiveness of TNV was affected by the type of tween. With the TNV made from tween 60, cholesterol, and PEG (47.5: 47.5:5), more encapsulation effectiveness was attained. By combining CUR with BBR, especially when given in TNV, apoptosis increased. Additionally, when CUR and BBR were administered in combination, they significantly reduced the risk of MDR1 development. The current work suggests that the delivery of berberine and curcumin as a combination medication therapy via tween-based nanovesicles may be a potential lung cancer treatment.


Assuntos
Berberina , Carcinoma , Curcumina , Neoplasias Pulmonares , Humanos , Apoptose , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Berberina/farmacologia , Berberina/uso terapêutico , Carcinoma/tratamento farmacológico , Curcumina/farmacologia , Curcumina/uso terapêutico , Quimioterapia Combinada , Pulmão/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Nanomedicina , Polissorbatos/farmacologia
6.
J Med Chem ; 67(7): 5854-5865, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38544305

RESUMO

The blood-brain barrier (BBB) poses a significant obstacle in developing therapeutics for neurodegenerative diseases and central nervous system (CNS) disorders. P-glycoprotein (P-gp), a multidrug resistance protein, is a critical gatekeeper in the BBB and plays a role in cancer chemoresistance. This paper uses cryo-EM P-gp structures as starting points with an induced fit docking (IFD) model to evaluate 19 pairs of compounds with known P-gp efflux data. The study reveals significant differences in binding energy and sheds light on structural modifications' impact on efflux properties. In the cases examined, fluorine incorporation influences the efflux by altering the molecular conformation rather than proximal heteroatom basicity. Although there are limitations in addressing covalent interactions or when binding extends into the more flexible vestibule region of the protein, the results provide valuable insights and potential strategies to overcome P-gp efflux, contributing to the advancement of drug development for both CNS disorders and cancer therapies.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Neoplasias , Humanos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Ligantes , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Barreira Hematoencefálica/metabolismo , Neoplasias/metabolismo
7.
J Med Chem ; 67(6): 4560-4582, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38502936

RESUMO

Inspired by the structure of dysoxylactam A (DLA) that has been demonstrated to reverse P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) effectively, 61 structurally simplified cyclolipopeptides were thus designed and synthesized via an effective method, and their reversing P-gp-mediated MDR potentials were evaluated, which provided a series of more potent analogues and allowed us to explore their structure-activity relationship (SAR). Among them, a well-simplified compound, 56, with only two chiral centers that all derived from amino acids dramatically reversed drug resistance in KBV200 cells at 10 µM in combination with vinorelbine (VNR), paclitaxel (PTX), and adriamycin (ADR), respectively, which is more promising than DLA. The mechanism study showed that 56 reversed the MDR of tumor cells by inhibiting the transport function of P-gp rather than reducing its expression. Notably, compound 56 effectively restored the sensitivity of MDR tumors to VNR in vivo at a dosage without obvious toxicity.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Resistencia a Medicamentos Antineoplásicos , Lipopeptídeos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Resistência a Múltiplos Medicamentos , Subfamília B de Transportador de Cassetes de Ligação de ATP , Doxorrubicina/farmacologia , Linhagem Celular Tumoral
8.
Sci Rep ; 14(1): 7589, 2024 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-38555345

RESUMO

P-glycoprotein (P-gp) imparts multi-drug resistance (MDR) on the cancers cell and malignant tumor clinical therapeutics. We report a class of newly designed and synthesized oxygen-heterocyclic-based pyran analogues (4a-l) bearing different aryl/hetaryl-substituted at the 1-postion were synthesized, aiming to impede the P-gp function. These compounds (4a-l) have been tested against cancerous PC-3, SKOV-3, HeLa, and MCF-7/ADR cell lines as well as non-cancerous HFL-1 and WI-38 cell lines to determine their anti-proliferative potency.The findings demonstrated the superior potency of 4a-c with 4-F, 2-Cl, and 3-Cl derivatives and 4h,g with 4-NO2, 4-MeO derivatives against PC-3, SKOV-3, HeLa, and MCF-7/ADR cell lines.Compounds 4a-c were tested for P-gp inhibition and demonstrated significant vigour against MCF-7/ADR cells with IC50 = 5.0-10.7 µM. The Rho123 accumulation assay showed that compounds 4a-c adequately inhibited P-gp function, as predicted. Furthermore, 4a or 4b administration resulted in MCF-7/ADR cell accumulation in the S phase, while compound 4c induced apoptosis by causing cell cycle arrest at G2/M. The molecular docking was applied to understand the likely modes of action and guide us in the rational design of more potent analogs. The investigate derivatives showed their good binding potential for p-gp active site with excellent docking scores and interactions. Finally, the majority of investigated derivatives 4a-c derivatives showed high oral bioavailability, but they did not cross the blood-brain barrier. These results suggest that they have favorable pharmacokinetic properties. Therefore, these compounds could serve as leads for designing more potent and stable drugs in the future.


Assuntos
Antineoplásicos , Oxigênio , Humanos , Células MCF-7 , Oxigênio/metabolismo , Simulação de Acoplamento Molecular , Resistencia a Medicamentos Antineoplásicos , Resistência a Múltiplos Medicamentos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Doxorrubicina/farmacologia
9.
Toxicon ; 241: 107674, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458495

RESUMO

Bisphenol A (BPA) engenders testicular toxicity via hydroxyl free radical genesis in rat striatum and depletion of the endogenous antioxidants in the epididymal sperms. The multi-drug resistance efflux carrier; P-glycoprotein (P-gp) expel the BPA from the testis and is responsible for the testicular protection through the deactivation of numerous xenobiotics. In our study, we investigated whether the BPA-induced testicular toxicity could be circumvented through administration of an antioxidant; crocin (Cr). Implication of P-gp expression was also investigated. Rats administered BPA (10 mg/kg b.w. orally for 14 days), dropped the body weight, testes/body weight ratio, total protein content, testosterone, follicle stimulating hormone, luteinizing hormone, and sperm motility & count, total antioxidant status, glutathione content and antioxidant enzymes (superoxide dismutase and catalase), concomitant with the elevation of the percentage abnormal sperm morphology, as well as testicular lipid peroxides and nitrite/nitrate levels. Histopathological examination showed spermatogenesis disorders after the BPA rats exposure. The immunohistochemical study showed up-regulation of the P-gp as evident by increasing immunoreactivity in interstitial cells, with positive localization in some spermatogonia cells. The BPA-treated rats showed positive immunoreactivity against caspase-3. The co-intake of Cr (200 mg/kg b.w./day, i.p. 14 days) along with the BPA, significantly ameliorated all the mentioned parameters, boosted histopathological image, fell the caspase-3 up-regulation, and perched the P-gp expression. We showed that, Cr promotes P-gp as an approach to nurture the testicles against the BPA toxicity. In conclusion; Cr lessens the oxidative stress conditions to safeguard rats from the BPA-induced testicular toxicity and sex hormones abnormalities, reducing apoptosis and up-regulating P-gp.


Assuntos
Antioxidantes , Compostos Benzidrílicos , Carotenoides , Fenóis , Testículo , Animais , Masculino , Ratos , Antioxidantes/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/efeitos dos fármacos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Compostos Benzidrílicos/toxicidade , Peso Corporal , Carotenoides/farmacologia , Caspase 3/metabolismo , Estresse Oxidativo , Fenóis/toxicidade , Sêmen/metabolismo , Motilidade dos Espermatozoides , Testículo/efeitos dos fármacos , Testículo/metabolismo
10.
Fitoterapia ; 174: 105854, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38331050

RESUMO

The chemical transformation of lathyrane nucleus through reduction and oxidation reactions using Euphorbia Factor L1 (EFL1) and Euphorbia Factor L1 (EFL3) as examples were investigated, along with a co-modification strategy of lathyrane nucleus and its side ester chain. A total of 38 lathyrane derivatives (5-42) including 34 new compounds were obtained, which greatly enriched the structural diversity of the lathyrane-type diterpenoids. Cytotoxicity against drug-sensitive and drug (adriamycin, ADM) resistant MCF-7 cells showed that 23 out of 38 transformed derivatives possessed obvious cytotoxic activity with IC50 values ranging from 7.0 to 41.1 µM and 3.2 to 45.5 µM, respectively, against both cells, compared to the noncytotoxic EFL1 and EFL3. The multidrug resistance (MDR) reversing activities of these lathyrane derivatives were further evaluated in MCF-7/ADM. Three transformed compounds (reversal fold, RF = 151.33, 62.94 and 47.3 for 27, 37 and 42) showed markedly higher activity than EFL1 (RF = 32.92) and EFL3 (RF = 39.68). Structure-activity relationship study revealed an essential role of C-6/17 and C-12/13 double bonds on lathyrane nucleus for exerting MDR reversal activity. Western blotting analysis showed that 42 could reduce the expression level of P-glycoprotein (P-gp) in MCF-7/ADM cells; however, the most active compound 27 with an unnatural 5/7/7/4 fused-ring diterpenoid skeleton, had no inhibitory effect on P-gp expression.


Assuntos
Diterpenos , Euphorbia , Fenilpropionatos , Estrutura Molecular , Euphorbia/química , Resistência a Múltiplos Medicamentos , Diterpenos/farmacologia , Diterpenos/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP
11.
Thorac Cancer ; 15(10): 820-829, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38409918

RESUMO

BACKGROUND: N-acetyltransferase 10 (NAT10) serves as a critical enzyme in mediating the N4-acetylcytidine (ac4C) that ensures RNA stability and effective translation processes. The role of NAT10 in driving the advancement of breast cancer remains uninvestigated. METHODS: We observed an increase in NAT10 expression, both at mRNA level through the analysis of the Cancer Genome Atlas (TCGA) database and at the protein level of tumor tissues from breast cancer patients. We determined that a heightened expression of NAT10 served as a predictor of an unfavorable clinical outcome. By screening the Cancer Cell Line Encyclopedia (CCLE) cell bank, this expression pattern of NAT10 was consistency found across almost all the classic breast cancer cell lines. RESULTS: Functionally, interference of NAT10 expression exerts an inhibitory effect on proliferation and invasion of breast cancer cells. By using ac4C RNA immunoprecipitation (ac4c-RIP) and acRIP-qPCR assays, we identified a reduction of ac4C enrichment within the ATP binding cassette (ABC) transporters, multidrug resistance protein 1 (MDR1) and breast cancer resistance protein (BCRP), consequent to NAT10 suppression. Expressions of MDR1 and BCRP exhibited a positive correlation with NAT10 expression in tumor tissues, and the inhibition of NAT10 in breast cancer cells resulted in a decrease of MDR1 and BCRP expression. Therefore, the overexpressing of MDR1 and BCRP could partially rescue the adverse consequences of NAT10 depletion. In addition, we found that, remodelin, a NAT10 inhibitor, reinstated the susceptibility of capecitabine-resistant breast cancer cells to the chemotherapy, both in vitro and in vivo. CONCLUSION: The results of our study demonstrated the essential role of NAT10-mediated ac4c-modification in breast cancer progression and provide a novel strategy for overcoming chemoresistance challenges.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Neoplasias da Mama , Citidina , Feminino , Humanos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Neoplasias da Mama/patologia , Citidina/análogos & derivados , Acetiltransferases N-Terminal/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , RNA Mensageiro/genética
12.
Drug Des Devel Ther ; 18: 215-222, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38312991

RESUMO

Purpose: Orexin receptors (OXRs) play a crucial role in modulating various physiological and neuropsychiatric functions within the central nervous system (CNS). Despite their significance, the precise role of OXRs in the brain remains elusive. Positron emission tomography (PET) imaging is instrumental in unraveling CNS functions, and the development of specific PET tracers for OXRs is a current research focus. Methods: The study investigated MDK-5220, an OX2R-selective agonist with promising binding properties (EC50 on OX2R: 0.023 µM, Ki on hOX2R: 0.14 µM). Synthesized and characterized as an OX2R PET probe, [11C]MDK-5220 was evaluated for its potential as a tracer. Biodistribution studies in mice were conducted to assess OX2R binding selectivity, with particular attention to its interaction with P-glycoprotein (P-gp) on the blood-brain barrier. Results: [11C]MDK-5220 exhibited promising attributes as an OX2R PET probe, demonstrating robust OX2R binding selectivity in biodistribution studies. However, an observed interaction with P-gp impacted its brain uptake. Despite this limitation, [11C]MDK-5220 presents itself as a potential candidate for further development. Discussion: The study provides insights into the functionality of the OX system and the potential of [11C]MDK-5220 as an OX2R PET probe. The observed interaction with P-gp highlights a consideration for future modifications to enhance brain uptake. The findings pave the way for innovative tracer development and propel ongoing research on OX systems, contributing to a deeper understanding of their role in the CNS. Conclusion: [11C]MDK-5220 emerges as a promising OX2R PET probe, despite challenges related to P-gp interaction. This study lays the foundation for further exploration and development of PET probes targeting OXRs, opening avenues for advancing our understanding of OX system functionality within the brain.


Assuntos
Radioisótopos de Carbono , Neuroimagem , Tomografia por Emissão de Pósitrons , Camundongos , Animais , Orexinas , Distribuição Tecidual , Tomografia por Emissão de Pósitrons/métodos , Receptores de Orexina/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo
13.
Phytomedicine ; 126: 155460, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38394731

RESUMO

BACKGROUND: Multidrug resistance is the major obstacle to cancer chemotherapy. Modulation of P-glycoprotein and drug combination approaches have been considered important strategies to overcome drug resistance. PURPOSE: Aiming at generating a small library of Amaryllidaceae-type alkaloids to overcome drug resistance, two major alkaloids, isolated from Pancratium maritimum, lycorine (1), and 2α-10bα-dihydroxy-9-O-demethylhomolycorine (2), were derivatized, giving rise to nineteen derivatives (3 - 21). METHODS: The main chemical transformation of lycorine resulted from the cleavage of ring E of the diacetylated lycorine derivative (3) to obtain compounds that have carbamate and amine functions (5 - 16), while acylation of compound 2 provided derivatives 17 - 21. Compounds 1 - 21 were evaluated for their effects on cytotoxicity, and drug resistance reversal, using resistant human ovarian carcinoma cells (HOC/ADR), overexpressing P-glycoprotein (P-gp/ABCB1), as model. RESULTS: Excluding lycorine (1) (IC50 values of 1.2- 2.5 µM), the compounds were not cytotoxic or showed moderate/weak cytotoxicity. Chemo-sensitization assays were performed by studying the in vitro interaction between the compounds and the anticancer drug doxorubicin. Most of the compounds have shown synergistic interactions with doxorubicin. Compounds 5, 6, 9 - 14, bearing both carbamate and aromatic amine moieties, were found to have the highest sensitization rate, reducing the dose of doxorubicin 5-35 times, highlighting their potential to reverse drug resistance in combination chemotherapy. Selected compounds (4 - 6, 9 - 14, and 21), able of re-sensitizing resistant cancer cells, were further evaluated as P-gp inhibitors. Compound 11, which has a para­methoxy-N-methylbenzylamine moiety, was the strongest inhibitor. In the ATPase assay, compounds 9-11 and 13 behaved as verapamil, suggesting competitive inhibition of P-gp. At the same time, none of these compounds affected P-gp expression at the mRNA or protein level. CONCLUSIONS: This study provided evidence of the potential of Amaryllidaceae alkaloids as lead candidates for the development of MDR reversal agents.


Assuntos
Adenocarcinoma , Alcaloides , Alcaloides de Amaryllidaceae , Antineoplásicos , Fenantridinas , Humanos , Alcaloides de Amaryllidaceae/farmacologia , Resistencia a Medicamentos Antineoplásicos , Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Alcaloides/farmacologia , Carbamatos/farmacologia , Linhagem Celular Tumoral
14.
Expert Rev Hematol ; 17(1-3): 87-94, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38230679

RESUMO

BACKGROUND: This study aimed to explore the effect and mechanism of SCN5A overcoming ATP-binding cassette (ABC) transporter-mediated multidrug resistance (MDR) in acute myeloid leukemia (AML) through promoting apoptosis. RESEARCH DESIGN AND METHODS: The tissues derived from AML patients were divided into Sensitive group and Resistance group according to the presence of drug-resistance. Human AML cell line HL-60 and drug-resistant strain HL-60/ADR were divided into HL-60/ADR-vector group, HL-60/ADR-SCN5A group, HL-60-vector group and HL-60-SCN5A group. RT-qPCR was used to detect the mRNA expression level of SCN5A; MTT assay to assess the survival rate and proliferation level of cells; flow cytometry to determine the apoptosis level; and western blot to check the levels of SCN5A, P-glycoprotein (P-gp), MDR protein 1 (MRP1), MDR gene 1 (MDR1), breast cancer resistance protein (BCRP), Bcl-2-associated X protein (Bax), and B-cell lymphoma 2 (Bcl-2) proteins in cells. RESULTS: SCN5A expressed lowly in drug-resistant AML tissues and cells. Up-regulation of SCN5A inhibited MDR in HL-60 cells, enhanced the chemosensitivity of HL-60/ADR, and increased the apoptosis levels of HL-60 and HL-60/ADR cells. However, over-expression of SCN5A inhibited the expression of MDR-related proteins. CONCLUSIONS: SCN5A may overcome ABC transporter-mediated MDR in AML through enhancing the apoptosis and inhibiting the expression of MDR proteins.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Leucemia Mieloide Aguda , Humanos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas de Neoplasias/genética , Resistência a Múltiplos Medicamentos/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Apoptose/genética , Canal de Sódio Disparado por Voltagem NAV1.5/genética
15.
Clin Transl Sci ; 17(1): e13713, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38226443

RESUMO

Intestinal P-glycoprotein (P-gp) activity plays a crucial role in modulating the oral bioavailability of its substrates. Fexofenadine has commonly been used as a P-gp probe, although it is important to note the involvement of other drug transporters like, OATP1B1, OATP1B3, and OATP2B1. In vitro studies demonstrated an upregulation of P-gp protein in response to exposure to pregnancy-related hormones. The objective of this study was to investigate how intestinal P-gp activity is impacted by menopausal status. This study sampled fexofenadine plasma concentrations over 0-12 h after probe drug administration from two groups of patients with breast cancer: premenopausal (n = 20) and postmenopausal (n = 20). Fexofenadine plasma concentrations were quantified using liquid-chromatography tandem mass spectrometry. Area under the plasma concentration-time curve from zero to infinity (AUCinf ) was calculated through limited sampling strategies equation. Multiple linear regression was applied on AUCinf , maximum plasma concentration (Cmax ), and time to Cmax . Postmenopausal patients showed a significant increase in Cmax (geometric mean and 95% confidence interval [CI] 143.54, 110.95-176.13 vs. 223.54 ng/mL, 161.02-286.06 and in AUCinf 685.55, 534.98-878.50 vs. 933.54 ng·h/mL 735.45-1184.99) compared to premenopausal patients. The carriers of the ABCB1 3435 allele T displayed higher Cmax values of 166.59 (95% CI: 129.44-214.39) compared to the wild type at 147.47 ng/mL (95% CI: 111.91-194.34, p = 0.02). In postmenopausal individuals, the decrease in P-gp activity of ~40% may lead to an increased plasma exposure of orally administered P-gp substrates.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Neoplasias da Mama , Humanos , Feminino , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Pós-Menopausa , Terfenadina
16.
Sci Rep ; 14(1): 70, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167542

RESUMO

Chemotherapy is a powerful means of cancer treatment but its efficacy is compromised by the emergence of multidrug resistance (MDR), mainly linked to the efflux transporter ABCB1/P-glycoprotein (P-gp). Based on the chemical structure of betulin, identified in our previous work as an effective modulator of the P-gp function, a series of analogs were designed, synthesized and evaluated as a source of novel inhibitors. Compounds 6g and 6i inhibited rhodamine 123 efflux in the P-gp overexpressed leukemia cells, K562/Dox, at concentrations of 0.19 µM and 0.39 µM, respectively, and increased the intracellular accumulation of doxorubicin at the submicromolar concentration of 0.098 µM. Compounds 6g and 6i were able to restore the sensitivity of K562/Dox to Dox at 0.024 µM and 0.19 µM, respectively. Structure-activity relationship analysis and molecular modeling revealed important information about the structural features conferring activity. All the active compounds fitted in a specific region involving mainly transmembrane helices (TMH) 4-6 from one homologous half and TMH 7 and 12 from the other, also showing close contacts with TMH 6 and 12. Compounds that bound preferentially to another region were inactive, regardless of their free energy of binding. It should be noted that compounds 6g and 6i were devoid of toxic effects against peripheral blood mononuclear normal cells and erythrocytes. The data obtained indicates that both compounds might be proposed as scaffolds for obtaining promising P-gp inhibitors for overcoming MDR.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Antineoplásicos , Humanos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Leucócitos Mononucleares/metabolismo , Resistencia a Medicamentos Antineoplásicos , Células K562 , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Doxorrubicina/farmacologia , Doxorrubicina/metabolismo
17.
Adv Healthc Mater ; 13(3): e2301345, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37855250

RESUMO

Chemotherapy remains the most essential treatment for prostate cancer, but multidrug resistance (MDR) contributes to chemotherapy failure and tumor-related deaths. The overexpression of P-glycoprotein (P-gp) is one of the main mechanisms behind MDR. Here, this work reports a multimodal nanoplatform with a reactive oxygen species (ROS) cascade for gas therapy/ferroptosis/chemotherapy in reversing MDR. The nanoplatform disassembles when responding to intracellular ROS and exerts three main functions: First, nitric oxide (NO) targeted delivery can reverse MDR by downregulating P-gp expression and inhibiting mitochondrial function. Second, ferrocene-induced ferroptosis breaks the redox balance in the tumor intracellular microenvironment and synergistically acts against the tumor. Third, the release of paclitaxel (PTX) is precisely controlled in situ in the tumor for chemotherapy that avoids damage to normal tissues. Excitingly, this multimodal nanoplatform is a promising weapon for reversing MDR and may provide a pioneering paradigm for synergetic cancer therapy.


Assuntos
Ferroptose , Neoplasias da Próstata , Masculino , Humanos , Espécies Reativas de Oxigênio/metabolismo , Resistencia a Medicamentos Antineoplásicos , Resistência a Múltiplos Medicamentos , Paclitaxel/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Linhagem Celular Tumoral , Microambiente Tumoral
18.
J Pharm Sci ; 113(1): 228-234, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37898165

RESUMO

This report focuses on pharmacokinetic drug-endogenous substrate interactions (DEIs). We hypothesized that P-glycoprotein (P-gp)-mediated DEI might affect androgen kinetics, especially its blood-brain barrier (BBB) permeability. The intracellular accumulation of the endogenous substrates of P-gp, testosterone (TES) and androstenedione (ADO) was increased by several tested drugs in uptake studies using P-gp overexpressing cells, indicating that these drugs inhibit P-gp-mediated efflux of TES of ADO from the cells. In a transport study using rat BBB kit, we found that the BBB limited the penetration of TES and ADO into the central nervous system. In addition, tested drugs that cause DEI were found to increase BBB permeability of TES and ADO via P-gp inhibition. In short, this study provides new findings regarding the possibility that DEI may affect the kinetics of endogenous substrates of P-gp.


Assuntos
Androgênios , Barreira Hematoencefálica , Ratos , Animais , Barreira Hematoencefálica/metabolismo , Transporte Biológico , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Permeabilidade , Testosterona
19.
Bioorg Chem ; 143: 106997, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38029569

RESUMO

P-glycoprotein (P-gp) over-expression is a key factor in multi-drug resistance (MDR), which is a major factor in the failure of cancer treatment. P-gp inhibitors have been demonstrated to have powerful pharmacological properties and may be used as a therapeutic approach to overcome the MDR in cancer cells. Combining clinical investigations with biochemical and computational research may potentially lead to a clearer understanding of the pharmacological properties and the mechanisms of action of these P-gp inhibitors. The task of turning these discoveries into effective therapeutic candidates for a variety of malignancies, including resistant and metastatic kinds, falls on medicinal chemists. A variety of P-gp inhibitors with great potency, high selectivity, and minimal toxicity have been identified in recent years. The latest advances in drug design, characterization, structure-activity relationship (SAR) research, and modes of action of newly synthesized, powerful small molecules P-gp inhibitors over the previous ten years are highlighted in this review. P-gp transporter over-expression has been linked to MDR, therefore the development of P-gp inhibitors will expand our understanding of the processes and functions of P-gp-mediated drug efflux, which will be helpful for drug discovery and clinical cancer therapies.


Assuntos
Antineoplásicos , Antineoplásicos/farmacologia , Antineoplásicos/química , Resistencia a Medicamentos Antineoplásicos , Relação Estrutura-Atividade , Resistência a Múltiplos Medicamentos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP
20.
Phytomedicine ; 123: 155210, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38006807

RESUMO

BACKGROUND: Oncogenic multidrug resistance (MDR) is a tough question in cancer therapy. However, no effective medications targeting oncogenic MDR are currently available. Studies have demonstrated that mosloflavone exerts anti-inflammatory effects, yet, its potential to ameliorate MDR remains unclear. PURPOSE: This study aimed to access the capability and elucidate molecular mechanisms of mosloflavone as a MDR resensitizing candidate. METHODS: We investigated the ability of mosloflavone to reverse oncogenic MDR and investigated its underlying mechanisms through cytotoxicity assay, cell cycle assay, apoptosis assay, and zebrafish xenograft model. The modulatory interplay between mosloflavone and P-gp was investigated through analysis of calcein-AM uptake, substrate efflux, ATPase assays, and molecular docking simulation. RESULTS: Mosloflavone inhibited P-gp efflux function in an uncompetitive manner without altering ABCB1 gene expression. In addition, it stimulated P-gp ATPase activity by binding to an active site distinct from that of verapamil. Regarding MDR reversal potential, mosloflavone resensitized MDR cancer cells to chemotherapies by arresting cell cycle and triggering apoptosis, possibly by enhancing reactive oxygen species accumulation and reducing phospho-STAT3. Moreover, in the zebrafish xenograft model, mosloflavone significantly potentiated the antitumor effect of paclitaxel. CONCLUSION: Our findings underscore the potential of mosloflavone as a novel dual modulator of STAT3 and P-gp, indicating it is a promising candidate for overcoming MDR in cancer treatment.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Antineoplásicos , Flavonoides , Animais , Humanos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Peixe-Zebra/metabolismo , Simulação de Acoplamento Molecular , Resistencia a Medicamentos Antineoplásicos , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Resistência a Múltiplos Medicamentos , Adenosina Trifosfatases/metabolismo , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Antineoplásicos/farmacologia , Fator de Transcrição STAT3/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...